

Data Sheet

100Gb/s QSFP28 FR Single Lambda Optical Transceiver P/N: WST-QS28-FR-C

Applications:

- Data Center Interconnect
- 100G Ethernet

Features:

- QSFP28 MSA compliant
- 802.3cu compliant
- 100GE FR1 Specification compliant
- Non-hermetic package design
- Maximum power consumption 4.0 W
- LC connector
- Up to 2 km transmission on single mode fiber with FEC
- Operating case temperature: 0° ~70°
- Single 3.3 V power supply
- RoHS 2 compliant

Description

WST-QS28-FR-C is a transceiver module designed for 2 km optical communication applications, and it is compliant with IEEE 802.3cu 100GE FR1 MSA standard. This module can convert 4-channel 25.78125 Gbit/s electrical data to 1-channel 106.25 Gbit/s optical signals. Similarly, it can convert 1-channel 106.25 Gbit/s optical signals to 4-channel output electrical data on the receiver side. It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very high functionality and feature integration, accessible via a two-wire serial interface.

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings Might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Units	Notes
Storage Temperature	Ts	-40	85	°C	
Power Supply Voltage	Vcc	-0.3	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	
Damage Threshold	TH₀	5.5		dBm	

Recommended Operating Conditions and Power Supply Requirement

Parameter	Symbol	Min	Typical	Max	nits	Notes
Operating Case Temperature	T _{OP}	0		70	°C	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Electrical Data Rate, each Lane (NRZ)			25.78125		Gb/s	
Optical Data Rate (PAM4)			53.125		GBd	
Data Rate Accuracy		-100		100	ppm	
Link Distance with G.652	D	2		2000	m	

Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

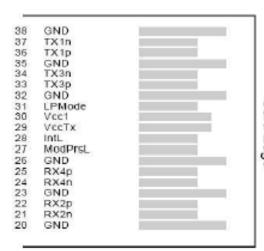
Parameter	Test Point	Min	Typical	Max	Units	Notes					
Power Consumption				4.0	W						
Supply Current	Icc			1.212	Α						
Transmitter (each Lane)	Transmitter (each Lane)										
Data Rate, each lane		25.78	125 ± 100pp	m	GBd						
Overload Differential Voltage pk-pk	TP1a			900	mV						
Common Mode Voltage (Vcm)	mon Mode Voltage (Vcm) TP1 -350		2850	mV							
Differential Termination Resistance	TD4			10	%	A+ 4N/LI=					
Mismatch	TP1			10	70	At 1MHz					

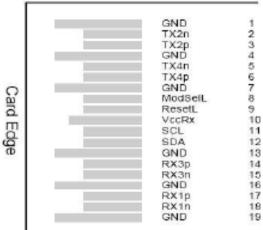
Common Mode Noise	RMS			17.5	mV	
Differential Return Loss	SDD22	See CEI-28	-VSR Equation	on (13-2)	dB	
Common Mode to Differential	SDC22	See CEI-28	-VSR Equation	on (13-4)	dB	
Common Mode Return Loss	SCC22			-2		From 250MHz to 30 GHz
Transition Time		9.5			ps	20%~80%
Vertical Eye Closure	VEC			5.5	dB	
Eye Width at 10-15 probability	EW15	0.57			UI	
Eye Height at 10-15 probability	EH15	228		mV		
Receiver (each Lane)						
Differential Voltage, pk-pk	TP4	900			mV	
Common Mode Voltage (Vcm)	TP4	-350		2850	mV	
Differential Termination Resistance Mismatch	TP4			10	%	At 1MHz
Differential Return Loss	SDD11	See CEI-28-VSR Equation (13-2)			dB	
Differential to Common Mode Conversion	SCD11	See CEI-28-VSR Equation (13-3)			dB	
Stressed Input Test		See CEI-28-V	SR Section 1	3.3.11.2.1		

Notes:

- 1. Vcm is generated by the host. Specification includes effects of ground offset voltage.
- 2. From 250MHz to 30GHz.

Optical Characteristics


Parameter	Symbol	Min	Typical	Max	Units	Notes					
Transmitter											
Data Rate		53	.125 ± 100 p _l	pm	GBd						
Modulation Format			PAM4								
Center Wavelength	λt	1304.5		1317.5	nm						
Side Mode Suppression Ratio	SMSR	30			dB						
Average Launch Power	P _{AVG}	-3.1		4	dBm	1					
Outer Optical Modulation Amplitude (OMAouter)	Рома	-0.2		4.2	dBm	2					
Launch Power in OMA _{outer} minus for TDECQ < 1.4 dB		-0.1		4.2	dBm						


for 1.4 dB \leq TDECQ \leq 3.4 dB		-1.5+TDECQ			
Transmitter and Dispersion Eye Closure for PAM4 (TDECQ)	TDECQ		3.4	dB	
Transmitter eye closure for PAM4 (TECQ)	TECQ		3.4	dB	
Extinction Ratio	ER	3.5		dB	
Transmitter transition time	RIN		17	Ps	
Optical Return Loss Tolerance	TOL		17.1	dB	
Transmitter Reflectance	RT		-26	dB	
Average Launch Power of OFF Transmitter	Poff		-15	dBm	
Receiver		1			
Center Wavelength	λr	1304.5	1317.5	nm	
Damage Threshold	THd	5.0		dBm	
Average Receive Power		-7.1	4.0	dBm	
Receive Power (OMA _{outer})			4.2	dBm	
Receiver Sensitivity (OMA _{outer})					
for TECQ < 1.4 dB	SEN		-4.5	dBm	
for 1.4 dB \leq TECQ \leq 3.4 dB			-5.9+SECQ		
Stressed Receiver Sensitivity (OMA _{outer})	SRS		-2.5	dBm	
Receiver Reflectance	RR		-26	dB	
LOS Assert	LOSA	-15		dBm	
LOS Deassert	LOSD		-8.6	dBm	
LOS Hysteresis	LOSH	0.5		dB	
Conditions of Stress Receiver Ser	nsitivity Test	t (Note 8)			1
Stressed eye closure for PAM4 (SECQ), lane under test			3.4	dB	

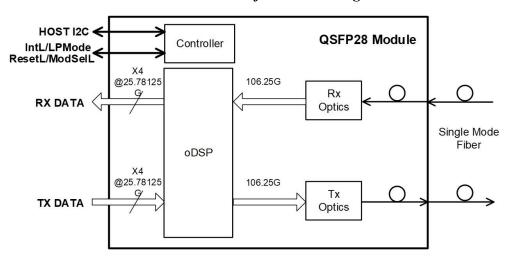
Notes:

- 1. Receiver Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmit- ter with a value of SECQ up to 3.4 dB
- 2. Measured with conformance test signal for BER = $2.4x10^{-4}$.
- 3. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Pin Assignment

Top Side Viewed from Top

Bottom Side Viewed from Bottom


PIN	Logic	Symbol	Name/Description	Notes
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Тх4р	Transmitter Non-Inverted Data output	
7		GND	Ground	1
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1

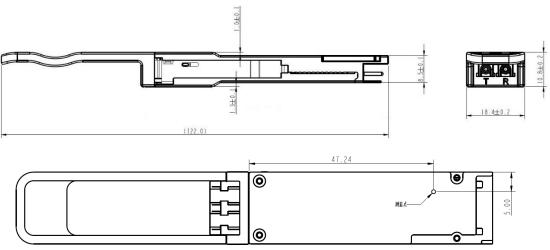
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Non-Inverted Data Output	
25	CML-O	Rx4p	Receiver Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3 V Power Supply transmitter	2
30		Vcc1	+3.3 V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

Notes:

- GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within
 the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted.
 Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA.

Recommended Host - Transceiver Interface Block Diagram

Digital Diagnostic Functions


The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified

Parameter	Symbol	Min	Max	Units	Notes
Temperature Monitor Absolute Error	DMI_Temp	-3	3	degC	Over operating temperature range
Supply Voltage Monitor Absolute	DMI_VCC	-0.1	0.1	V	Over full operating range
RX Power Monitor Absolute Error	DMI_RX	-3	3	dB	1
Bias Current Monitor	DMI_Ibias	-10%	10%	mA	
TX Power Monitor Absolute Error	DMI_TX	-3	3	dB	1

Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional \pm 1 dB fluctuation, or a \pm 1 dB total accuracy

Mechanical Drawing

Unit: mm

Ordering Information

Part No	Package	Data rate per Lane	Laser	Optical Power	Detector	Max. Receive Sensitivity (OMA)	Temp	Reach	Other	Application code
WST-QS28-FR-C	QSFP28	Input 25.78 Gb/s per lane / Optical 53.125 Gbd (PAM4)	1310nm EML	-3.1 ~ +4 dBm	PIN	max(-4.5, SECQ-5.9)	0~70°C	2km w/ FEC	DDM RoHS	100G Ethernet

Modification History

Revision	Date	Description	Originator	Review	Approved
V1.0	01-Sep-2021	New Issue	Shao Yu Lee	Tom Tang	Wayne Liao

Taipei Headquarters

16F-5, No. 75, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 22101, Taiwan

Tel: +886-2-2698-7208 Fax: +886-2-2698-7210

U.S. Branch

2080 Rancho Higuera Ct. Fremont, CA 94539, USA

Tel: 510-651-7800 Fax: 510-651-7822

ShenZhen Branch

610#, 6F, No.204 Building, 2nd Industrial zone Nanyou, Nanshan district, Shenzhen, Guangdong China 518054

Tel: +86-755-86265980

All specification data are accurate on the date of publication for product comparisons and ordering information. WaveSplitter Technologies, Inc. reserves the right to change specifications without notice.